Public
Authored by raviteja

Developments in optical communications

Developments in optical communications provide a good illustration of how multiple threads of research in electronics, photonics, signal processing, and coding theory have all contributed to the remarkable growth in optical transport capacity. These developments were driven first by the advantage of displacing the copper transport plant with optical fiber (early 1980s); the emergence of pervasive global connectedness (1980s and 1990s); widespread Internet use (starting in the mid-1990s); and broadband data and video access (starting circa 2000). High-speed electronic and optical devices have kept a steady pace with this demand to enable the growth in optical capacity with gigabits-per-second (Gbps) silicon and GaAs circuits appearing in 1985, leading to today’s commercial InP circuits working in 40-Gbps optical channels. Recent laboratory results have shown that 100-Gbps electronic circuits are possible. The first reports between 1986 and 1988 of erbium-doped amplifiers led to wavelength-division multiplexing (WDM), which made it practical to carry multiple optical channels on a single fiber. Today more than 100 channels can be carried in a single fiber, with aggregate capacity exceeding 6 terabits per second. After the introduction of WDM, new optical fiber types that balance between chromatic dispersion and optical nonlinearities were introduced in the early 1990s, successfully extending the capacity and range of optical transport systems. Complementing the fiber evolution has been the evolution in signal modulation formats, resulting in more compact signal spectra and more robust channels. Finally, new coding methods, in particular forward-error correction schemes, have greatly increased the design margins possible for optical transport and have figured significantly in the enhancement of capacity and range over the past 5 or 6 years. Further technological advances in all-optical signal regeneration, modulation formats, and channel filtering are expected to continue to enable improvements in fiber-optic communications.It is also worth reflecting on the many notable spin-offs of past telecommunications research. More info: break fix

40 Bytes
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment